三、多維隨機變量及其分布
考試內容
多維隨機變量及其分布 二維離散型隨機變量的概率分布、邊緣分布和條件分布 二維連續(xù)型隨機變量的概率密度、邊緣概率密度和條件密度 隨機變量的獨立性和不相關性 常用二維隨機變量的分布 兩個及兩個以上隨機變量簡單函數(shù)的分布
考試要求
1.理解多維隨機變量的概念,理解多維隨機變量的分布的概念和性質,理解二維離散型隨機變量的概率分布、邊緣分布和條件分布,理解二維連續(xù)型隨機變量的概率密度、邊緣密度和條件密度,會求與二維隨機變量相關事件的概率.
2.理解隨機變量的獨立性及不相關性的概念,掌握隨機變量相互獨立的條件.
3.掌握二維均勻分布,了解二維正態(tài)分布的概率密度,理解其中參數(shù)的概率意義.
4.會求兩個隨機變量簡單函數(shù)的分布,會求多個相互獨立隨機變量簡單函數(shù)的分布.
四、隨機變量的數(shù)字特征
考試內容
隨機變量的數(shù)學期望(均值)、方差、標準差及其性質 隨機變量函數(shù)的數(shù)學期望 矩、協(xié)方差、相關系數(shù)及其性質
考試要求
1.理解隨機變量數(shù)字特征(數(shù)學期望、方差、標準差、矩、協(xié)方差、相關系數(shù))的概念,會運用數(shù)字特征的基本性質,并掌握常用分布的數(shù)字特征.
2.會求隨機變量函數(shù)的數(shù)學期望.
五、大數(shù)定律和中心極限定理
考試內容
切比雪夫(Chebyshev)不等式 切比雪夫大數(shù)定律 伯努利(Bernoulli)大數(shù)定律 辛欽(Khinchine)大數(shù)定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列維-林德伯格(Levy-Lindberg)定理
考試要求
1.了解切比雪夫不等式.
2.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨立同分布隨機變量序列的大數(shù)定律).
3.了解棣莫弗-拉普拉斯定理(二項分布以正態(tài)分布為極限分布)和列維-林德伯格定理(獨立同分布隨機變量序列的中心極限定理).
六、數(shù)理統(tǒng)計的基本概念
考試內容
總體 個體 簡單隨機樣本 統(tǒng)計量 樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數(shù) 正態(tài)總體的常用抽樣分布
考試要求
1.理解總體、簡單隨機樣本、統(tǒng)計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2.了解分布、分布和分布的概念及性質,了解上側分位數(shù)的概念并會查表計算.
3.了解正態(tài)總體的常用抽樣分布.
七、參數(shù)估計
考試內容
點估計的概念 估計量與估計值 矩估計法 最大似然估計法 估計量的評選標準 區(qū)間估計的概念 單個正態(tài)總體的均值和方差的區(qū)間估計 兩個正態(tài)總體的均值差和方差比的區(qū)間估計
考試要求
1.理解參數(shù)的點估計、估計量與估計值的概念.
2.掌握矩估計法(一階矩、二階矩)和最大似然估計法.
3.了解估計量的無偏性、有效性(最小方差性)和一致性(相合性)的概念,并會驗證估計量的無偏性.
4、理解區(qū)間估計的概念,會求單個正態(tài)總體的均值和方差的置信區(qū)間,會求兩個正態(tài)總體的均值差和方差比的置信區(qū)間.
八、假設檢驗
考試內容
顯著性檢驗 假設檢驗的兩類錯誤 單個及兩個正態(tài)總體的均值和方差的假設檢驗
考試要求
1.理解顯著性檢驗的基本思想,掌握假設檢驗的基本步驟,了解假設檢驗可能產生的兩類錯誤.
2.掌握單個及兩個正態(tài)總體的均值和方差的假設檢驗.
來源:萬學教育
2021-07-09
2021-07-08
2021-07-08
2021-07-08
2021-07-08
2021-07-08
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-07
2021-07-06
2021-07-06
2021-07-06
工作態(tài)度怎么寫 具有穩(wěn)定的工作心態(tài)
2021-07-06
該文觀點僅代表作者本人,查查吧平臺系信息發(fā)布平臺,僅提供信息存儲空間服務,不承擔相關法律責任。圖片涉及侵權行為,請發(fā)送郵件至85868317@qq.com舉報,一經(jīng)查實,本站將立刻刪除。